
PHYS 110A - HW #5
Solutions by David Pace
Any referenced equations are from Griffiths

[1.] Problem 3.28 from Griffiths Following Example 3.9 of Griffiths (page 142) consider a
spherical shell of radius R and surface charge density σ = k cos θ.

(a) Find the dipole moment of this distribution.

(b) Find the approximate potential at points far away from the shell. Compare your solu-
tion with the exact answer given as equation 3.87. What does this mean about the higher
multipoles?

Part (a)

The dipole moment of a surface charge is given by,

~p =

∫
~r′σ(~r′)da′

This is not explicitly given in Griffiths, but equation 3.98 gives the dipole moment for
a volume charge distribution and it is said that the equivalent expressions for line and
surface charges are similarly found.

Figure 1: Geometry of problem [1.]. The shell is shown as a two dimensional cross section.

Use figure 1 to determine the direction of ~p. Dipole moments always point from the nega-
tive charge to the positive. The cos θ term has positive values in the region above the plane
(where θ ranges from 0 to π

2
). This term is negative in the region below the plane. Using

these facts and the symmetry of the shell we can determine that the dipole moment must
point in the positive ẑ direction. I use primes to denote coordinates with respect to the
shell.
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~p =

∫
~r′ k cos θ′ r′2 sin θ′dθ′dφ′

=

∫
~z′ k cos θ′ r′2 sin θ′dθ′dφ′

= 2πk

∫
z′ cos θ′ sin θ′ r′2dθ′

This is a surface integral so r’ is evaluated at R (the surface of the shell). Also, recall that
z′ = r′ cos θ′ and that eventually we have to include the limits of our integration.

~p = 2πk

∫
r′3 cos2 θ′ sin θ′dθ′ ẑ

= 2πkR3

∫
cos2 θ′ sin θ′dθ′ ẑ

= 2πkR3

∫ π

0

cos2 θ′ sin θ′dθ′ ẑ

= 2πkR3

∫ 1

−1

cos2 θ′d(cos θ′) ẑ

= 2πkR3

[
cos3 θ′

3

]1

−1

ẑ

= 2πkR3

[
1

3
− −1

3

]
ẑ

=
4

3
πkR3ẑ

Part (b)

We can use the multipole expansion to find the approximate potential at points far from
the sphere. The first term in this expansion is that due to a monopole.

Vmon =
Qtotal

4πε0r
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Use the charge density to determine Qtotal.

Qtotal =

∫
σda

=

∫
k cos θ′ r′2 sin θ′dθ′dφ′

= 2πkR2

∫ 1

−1

cos θ′d(cos θ′)

= 2πkR2

[
cos2 θ′

2

]1

−1

= 2πkR2

[
1

2
− 1

2

]
= 0

Therefore the monopole term is zero. Next we calculate the dipole term that is given by eq.
3.102.

Vdip =
r̂ · ~p

4πε0r2

=
1

4πε0r2

(
4

3
πkR3ẑ · r̂

)

=
kR3

3ε0r2

[
(cos θr̂ − sin θθ̂ · r̂

]
=

kR3

3ε0r2
cos θ

The exact answer given in eq. 3.87 is,

V (r, θ) =
kR3

3ε0r2
cos θ

this is the same as our solution using only the first two terms of the multipole expansion.
We may conclude that all of the higher multipole terms are zero.

[2.] Problem 3.32 from Griffiths

Reference the distribution of three point charges as shown in Griffiths figure 3.38. Find the
approximae electric field far from the origin. Solve this problem in spherical coordinates
and use the two lowest orders in the multipole expansion.

There is a net charge in this configuration so we know that the monopole term is non-zero.
Summing the charges we find Qtotal = −q and far away from these charges the electric field
due to this monopole contribution will be,

Emono ≈
−q

4πε0r2
r̂
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Find the dipole moment to determine whether the dipole term for the electric field is non-
zero.

~p =
n∑
i

qi
~r′i Eq. 3.100

= −q(−aŷ) + (−q)(aŷ) + q(aẑ)

= qaẑ

= qa(cos θr̂ − sin θθ̂)

This dipole moment is centered at the origin so we can use eq. 3.103 for the electric field
of a dipole of this type. In this formulation the dipole moment is given as a magnitude
(you will find that the magnitude of the dipole moment we found has no θ dependence,
as should be expected). Equation 3.103 is exact for a pure dipole but only approximate for
regions far away from a physical dipole.

~Edip ≈ p

4πε0r3
(2 cos θr̂ + sin θθ̂) Eq. 3.103

≈ qa

4πε0r3

[
2 cos θr̂ + sin θθ̂

]
Both the monopole and dipole terms are non-zero so we have found the two lowest orders
of the multipole expansion. Electric fields obey the superposition principle so the final
solution for the approximate electric field far away from the point charges is,

~E ≈ q

4πε0

[(
2a cos θ

r3
− 1

r2

)
r̂ +

a sin θ

r3
θ̂

]
[3.] Problem 3.33 from Griffiths

Show that the coordinate free form of the electric field due to a dipole may be written as,

~Edip =
1

4πε0r3
[ 3(~p · r̂)r̂ − ~p ] Eq. 3.104

Method 1

Begin with a generic dipole moment. This is a simple vector and it can be written in terms
of two coordinates, be they x and y (Cartesian) or r and θ (spherical). If we choose to write
the dipole moment, ~p in terms of spherical coordinates then we can always put it in a form
that has no φ dependence. Writing this vector in a general sense it would look like the
following.

~p = (~p · r̂)r̂ + (~p · θ̂)θ̂

Since the above way or writing the dipole moment is entirely general it must be an equiva-
lent way of writing ~p for the dipole displayed in Griffiths, figure 3.36. This dipole moment
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is directed entirely along the z-axis and may be written (using ẑ = cos θr̂ − sin θθ̂),

~p = pẑ

= p cos θr̂ − p sin θθ̂

Equating this with the general expression we see that (~p · r̂)r̂ = p cos θr̂ and we can go on
to show,

3(~p · r̂)r̂ − ~p = 3p cos θr̂ − p cos θr̂ + p sin θθ̂

= 2p cos θr̂ + p sin θθ̂

This is the term found in Eq. 3.103 and shows that the coordinate free form will return the
correct answer for the example dipole given.

Method 2

Take the general (coordinate free) expression for the potential due to a dipole and calculate
the electric field.

Vdip =
1

4πε0

~p · r̂
r2

Eq. 3.99

The electric field is the negative gradient of the potential (see Griffiths page 78 for a re-
minder).

~Edip = −~∇V

=
−1

4πε0

~∇
(

~p · r̂
r2

)
=

−1

4πε0

~∇
(

~p · r̂

r2

)
Use this vector product rule (number 4 in the front cover of Griffiths),

~∇(~a ·~b) = (~a · ~∇)~b + (~b · ~∇)~a + ~a× (~∇×~b) +~b× (~∇× ~a)

The gradient term in the electric field equation may be written,

~∇
(

~p · r̂

r2

)
= (~p · ~∇)

r̂

r2
+

(
r̂

r2
· ~∇

)
~p + ~p×

(
~∇× r̂

r2

)
+

r̂

r2
× (~∇× ~p)

This expression can be simplified term by term. Begin with the last term on the right side.
The dipole moment, ~p is a vector that is constant in space. Therefore, ~∇ × ~p = 0 and this
entire term is zero.

For the third term: We are still dealing with a coordinate free form, but the vector r̂ is
always equivalent to the ~r in spherical coordinates because it simply represents the position
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of the object we care about. The curl of the r̂ term is exactly like the curl of the electric field
in our electrostatic cases, and we know that in electrostatics ~∇× ~E = 0.

~∇× ~E = 0 = ~∇× Qtot

4πε0r2
r̂

=
Qtot

4πε0

~∇× r̂

r2

So the third term is zero. Moving on to the second term we notice that it may be written
as, (

r̂

r2
· ~∇

)
~p =

1

r2
∇r~p

where ∇r represents only the r term of the ∇ operator. Again we may argue that ~p is
constant in space and therfore any derivative the ∇r term has will result in a value of zero
when acted upon ~p. This term is zero and the entire equation reduces to,

~∇
(

~p · r̂

r2

)
= (~p · ~∇)

r̂

r2

Once again considering a dipole directed along the z-axis (Griffiths Figure 3.36),

~p · ~∇ = (p cos θr̂ − p sin θθ̂) ·
(

r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

)
= p cos θ

∂

∂r
− p sin θ

1

r

∂

∂θ

Recall that ∂r̂
∂θ

= θ̂ to get,

(~p · ~∇)
r̂

r2
= p cos θ

(
− 2

r3

)
r̂ − p sin θ

(
1

r3

)
θ̂

=
1

r3
(−2p cos θr̂ − p sin θθ̂)

Putting this into our expression for the electric field (there is another negative sign in that
equation),

~E =
1

4πε0r3
(2p cos θr̂ + p sin θθ̂)

and we found from Method 1 that 2p cos θr̂ + p sin θθ̂ = 3(~p · r̂)r̂ − ~p. Thus we have again
shown the equivalent form for the electric field due to a dipole.

Finally, there exist many (somewhat obscure) vector identities that could have been used
to solve this problem. It is useful to have a reference for vector identities (Jackson, from the
suggested texts for example). The one we could have used just above is,

(~a · ~∇)r̂f(r) =
f(r)

r
[~a− r̂(~a · r̂)] + r̂(~a · r̂)∂f(r)

∂r
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Here ~a may be any vector and f(r) must be continuous. We have f(r) = 1
r2 which is

certainly not continuous at the origin (r = 0) but we are not concerned with the origin. We
are trying to prove an expression for the dipole field at points far from the origin and in
this case our f(r) is acceptable. Using this identity we have,

(~p · ~∇)
r̂

r2
=

1

r

1

r2
[~p− r̂(~p · r̂)] + r̂(~p · r̂)

(
−2

r3

)
=

1

r3
(~p− (~p · r̂)r̂)− 2

r3
(~p · r̂)r̂

=
1

r3

[
− 3(~p · r̂)r̂ + ~p

]
Put this expression in our electric field equation (noting the minus sign in the electric field
equation) and we see the coordinate free form is correct.

~Edip =
1

4πε0r3
[3(~p · r̂)r̂ − ~p]

[4.] Problem 4.6 from Griffiths

A pure dipole is located a distance z above an infinite grounded conducting plane (refer-
ence Griffiths figure 4.7). It makes an angle θ with the normal to the plane. Find the torque
on the dipole. If it is free to rotate, then in what orientation will it come to rest?

The method of images may be applied to dipoles as well as point charges. Figure 2 il-
lustrates the geometry of the image dipole ~p′ below the infinite plane. If you imagine the
dipole as a positive charge on one end and a negative charge on the other end then you
should be able to determine how to orient its image.

The torque on the ~p is given by,

~N = ~p× ~E Eq. 4.4

where ~E is the electric field due to the infinite plane (or the image dipole) and not ~p itself.

Find the electric field at ~p that is due to the image dipole, ~p′.

~E =
1

4πε0r3

[
3(~p′ · r̂)r̂ − ~p′

]
Since r̂ is directed toward ~p it is actually ẑ. The image dipole is given by (see figure 2)
~p′ = −p′ sin θx̂ + p′ cos θẑ. This fact coupled with ~p′ · r̂ = p′ cos θ returns,

~E =
1

4πε0r3

[
3p′ cos θẑ − (−p′ sin θx̂ + p′ cos θẑ)

]
=

1

4πε0(2z)3

[
2p′ cos θẑ + p′ sin θx̂

]
where in the last line I have used the fact that the distance between the dipoles is r = 2z.
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Figure 2: Image dipole geometry.

The original dipole is described by, ~p = p sin θx̂ + p cos θẑ. The cross product is written in
Cartesian coordinates as,

~N = ~p× ~E

= x̂(pyEz − pzEy)− ŷ(pxEz − pzEx) + ẑ(pxEy − pyEx)

= −ŷ(pxEz − pzEx)

since the y-component terms of both ~p and ~E are zero.

Plug in the values for the dipole and electric field components,

~N = −ŷ

(
p sin θ

2p cos θ

4πε0(2z)3
− p cos θ

p sin θ

4πε0(2z)3

)

=
−p2

32πε0z3
[2 sin θ cos θ − sin θ cos θ] ŷ

=
−p2

32πε0z3

[
sin θ cos θ

]
ŷ

Return to figure 2 again. From the right hand rule it is required that the ŷ direction be into
the page. Generally, if you point your right thumb in the direction of the torque, then your
fingers point in the direction of the actual “twist”. Do this to see that ~p is experiencing a
torque out of the page and that results in a twisting counterclockwise as drawn in figure 2.
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To determine the equilibrium position of ~p it is easier to examine the torque in terms of
only one sinusoidal term. Since,

sin θ cos θ =
1

2
sin(2θ)

we can write the torque as,

~N =
−p2

64πε0z3
sin(2θ)

If θ = 0 then the torque on ~p is zero. A slight tilt of ~p either way results in a torque that
seeks to rotate it back to the θ = 0 position. If θ = π then the torque on ~p is zero and any
slight tilt will result in a torque that seeks to return it to θ = π. The rest orientation of ~p is
perpendicular to the infinite plane, either pointing up or down (i.e. along ±ẑ).

Note: What happens at θ = π
2
? Here the torque on ~p is also zero yet we don’t say that this is

an equilibrium orientation. The torque on ~p is zero when ~p is parallel to the infinite plane,
but any slight perturbation to this orientation results in a torque that pulls ~p to either the
up or down orientation. Check the direction of the torque for angles a little above or below
θ = π

2
and you will see that this is not an equilibrium of the system. The same holds true

for θ = 3π
2

.

[5.] See homework for problem statement

Part (a)

Begin by drawing the setup of the problem.

Figure 3: Diagram of dipoles for problem 5.

The script O in figure 3 represents the origin of whatever coordinate system we are using.
All other objects are drawn according to the way the problem is stated.

The energy of a dipole, ~p, in and electric field, ~E, is given by,

U = −~p · ~E Eq. 4.6
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The problem asks for the energy of ~p2 in the electric field of ~p1.

U = −~p2 · ~E1 = −~p2 ·
1

4πε0r3

[
3(~p1 · r̂)r̂ − ~p1

]
→ where r = R and r̂ = R̂

=
1

4πε0R3
~p2 ·

[
~p1 − 3(~p1 · R̂)R̂

]
=

1

4πε0R3

[
(~p2 · ~p1)− 3(~p1 · R̂)(~p2 · R̂)

]
The ~p2 acts only the R̂ in the second term because the quantity ~p1 · R̂ is simply a scalar and
does not matter for the dot product. Finally, the order of the vectors does not matter in dot
(scalar) products so the first term above matches what we have been asked to show.

Part (b)

The force on a dipole is given by,

~F = (~p · ~∇) ~E Eq. 4.5

The force may also be written as the negative gradient of the potential energy, and in this
problem the potential energy is the electrostatic energy of the dipole in an electric field.

~F = −~∇U = ~∇(~p2 · ~E1)

Since we have already solved for the energy of this system we can write the force on ~p2 due
to ~p1 as,

~F =
1

4πε0

~∇
[

1

R3
(3(~p1 · R̂)(~p2 · R̂)− (~p1 · ~p2)

]
Special Case 1)

~p1 ‖ ~p2 and ~p1 , ~p2 ⊥ R̂

This allows us to rewrite the dot products in our expression for the force. The dot product
between a dipole moment and the R̂ will be zero.

~F =
1

4πε0

~∇
[

1

R3
(−p1p2)

]
The gradient term is with repsect only to the 1

R3 since the dipole values have no R depen-
dence. You can verify this next result using the product rule twice.

~∇ 1

R3
=
−3

R4
R̂

Finally giving,
~F =

3p1p2

4πε0R4
R̂
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Special Case 2)
~p1 ‖ ~p2 ‖ R̂

The dot products once again simplify.

~F =
1

4πε0

~∇
[
2p1p2

R3

]
=

1

2πε0

~∇
[p1p2

R3

]
=

−3p1p2

2πε0R4
R̂

[6.] Problem 4.9 from Griffiths

A dipole, ~p is located a distance, r, away from a point charge, q. The angle between ~p and ~r
is θ, where ~r points from q to ~p.

(a) What is the force on ~p? (b) What is the force on q?

Part (a)

Start by drawing a diagram of the problem. Figure 4 shows the locations of the dipole and
point charge.

The force on the dipole due to the electric field generated by the point charge is,

~F = (~p · ~∇) ~E Eq. 4.5

Here the electric field due to the charge q is (shown in Cartesian cordinates because that
will be easiest to show the math),

~E =
q

4πε0r2
r̂

=
q

4πε0

(xx̂ + yŷ + zẑ)

(x2 + y2 + z2)3/2

Noting that the dipole moment can always be written in terms of only two variables, we
can say that ~r lies along the z-axis and ~p is in the xz-plane. Then, ~p = p sin θx̂ + p cos θẑ.

~p · ~∇ = (p sin θx̂ + p cos θẑ) ·
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
= p sin θ

∂

∂x
+ p cos θ

∂

∂z

You can review this representation of ~∇ in Griffiths as Eq. 1.39.

Finally, the force is,

~F =
q

4πε0

[
p sin θ

∂

∂x

(
xx̂ + yŷ + zẑ

(x2 + y2 + z2)3/2

)
+ p cos θ

∂

∂z

(
xx̂ + yŷ + zẑ

(x2 + y2 + z2)3/2

)]
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Figure 4: Illustration of setup for problem 6.

I’ll write out the math for the derivative with respect to x, and the z derivative is found
analogously.

∂

∂x

(
xx̂ + yŷ + zẑ

(x2 + y2 + z2)3/2

)
= (x2 + y2 + z2)−3/2x̂ + (xx̂ + yŷ + zẑ)

(
−3

2

)
(x2 + y2 + z2)−5/2(2x)

=
(x2 + y2 + z2)x̂− 3x(xx̂ + yŷ + zẑ)

(x2 + y2 + z2)5/2

=
r2x̂− 3x~r

r5

=
1

r3

[
x̂− 3xr̂

r

]
The z derivative will be just like this, but with the z’s and x’s switched. The force becomes,

~F =
q

4πε0r3

[
p sin θ

(
x̂− 3xr̂

r

)
+ p cos θ

(
ẑ − 3zr̂

r

)]
=

q

4πε0r3

[
p sin θx̂ + p cos θẑ − 3

(
p sin θx + p cos θz

r

)
r̂

]
→ p sin θx + p cos θz = ~p · ~r

→ p sin θx̂ + p cos θẑ = ~p

=
q

4πε0r3

(
~p− 3

(
~p · ~r
r

)
r̂

)
=

q

4πε0r3

[
~p− 3(~p · r̂)r̂

]
Part (b)
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Write the force on the point charge due to the dipole as ~Fq so that it does not get confused
with the force we just found. The force on any point charge is given similarly,

~Fq = q ~Edip

where ~Edip is the electric field due to only the dipole.

Recall once again from Eq. 3.104,

~Edip =
1

4πε0r3

[
3(~p · r̂)r̂ − ~p

]
The solution for the force on the point charge is simple in this case,

~Fdip =
q

4πε0r3

[
3(~p · r̂)r̂ − ~p

]
Notice that ~F = −~Fq as it should.
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