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Problem Set 11 Solutions

Problem 1: Griffiths Problem 10.25 (p. 442)

The fields are

~E =
q

4πε0

(1 − β2)

(1 − β2 sin2 θ)3/2

r̂

r2
, ~B =

1

c2
~v × ~E ,

where β = v/c and ~r = ~x− ~vt with ~v = v~ex. The Poynting vector is

~S =
~E × ~B

µ0

=
(

q

4πr2

)2 v(1 − β2)2

ε0(1 − β2 sin2 θ)3
[r̂ × (~ex × r̂)] .

At t = 0, the power per unit area passing through a plane of constant x is

Sx(t = 0) =
~E × ~B

µ0

=
(

q

4πr2

)2 v(1 − β2)2 sin2 θ

ε0(1 − β2 sin2 θ)3
.

To get the total power, we integrate SxdA where dA is the area element in the plane
x = a. Let s = r sin θ = a tan θ be the cylindrical radius measured from the x axis
(instead of the usual z axis). Then dA = 2πs ds = πa2d(tan2 θ). Let u = tan2 θ. The
complete plane is spanned by 0 < u <∞. The distance and angles are related to u by

r2 = a2(1 + tan2 θ) = a2(1 + u) , sin2 θ =
u

1 + u
.

Thus the power flowing through the surface at t = 0 is

P =
∫

Sx dA =
(

q

4πa2

)2 πa2v(1 − β2)2

ε0

∫

∞

0

u du

[1 + (1 − β2)u]3
.

Let w = u(1 − β2); then

P =
q2v

16πε0a2

∫

∞

0

w dw

(1 + w)3
=

q2v

32πε0a2
.
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Problem 2: Griffiths 11.4 (p. 450)

For harmonic motion, d2~p/dt2 = −ω2~p, which is to be evaluated at tr = t − r/c. For a
dipole at r = 0, r̂ = ~er, so

~E = −µ0ω
2

4πr
[~er × (~er × ~p )] , ~B =

1

c
~er × ~E .

In spherical coordinates, ~p = pr~er + pθ~eθ + pφ~eφ, and

~er × (~er × ~p ) = pr~er − ~p = −pθ~eθ − pφ~eφ , ~er × [~er × (~er × ~p )] = pφ~eθ − pθ~eφ ,

giving

~E =
µ0ω

2

4πr
(pθ~eθ + pφ~eφ) , ~B =

µ0ω
2

4πcr
(−pφ~eθ + pθ~eφ) .

The spherical components are evaluated using

~er = ~ex sin θ cosφ+ ~ey sin θ sinφ+ ~ez cos θ ,

~eθ = ~ex cos θ cosφ+ ~ey cos θ sinφ− ~ez sin θ ,

~eφ = −~ex sinφ+ ~ey cosφ .

With px = p0 cosωtr and py = p0 sinωtr, we find

pθ = p0 cos θ(cosωtr cosφ+ sinωtr sinφ) = p0 cos θ cos(ωtr − φ) ,

pφ = p0(sinωtr cosφ− cosωtr sinφ) = p0 sin(ωtr − φ) .

The Poynting vector is now

~S =
~E × ~B

µ0

=
E2

µ0c
~er =

µ0p
2
0ω

4

16π2cr2
(cos2 θ cos2 α+ sin2 α)~er , α ≡ ωtr − φ .

Time-averaging gives 〈cos2 α〉 = 〈sin2 α〉 = 1
2
, so the intensity is

I = 〈Sr〉 =
µ0p

2
0ω

4

32π2cr2
(1 + cos2 θ) .

The intensity is maximal along the z-axis, i.e. perpendicular to the plane of the rotating
dipole. This makes sense because for a single dipole the radiation is most intense in
directions perpendicular to the dipole. The total power radiated is

P =
∫

I r2dΩ =
µ0p

2
0ω

4

32π2c

∫

(1 + cos2 θ) dΩ =
µ0p

2
0ω

4

6πc
,

where we used
∫

(1+cos2 θ) dΩ = 4π〈1+cos2 θ〉 = 16π/3 (here the angle brackets denote
an angular average, not a time average).

The power is twice that of a single dipole (Griffiths Eq. 11.22) because the x- and
y-components are out of phase. To see this, let ~p = ~p1 +~p2 with ~p1 = px~ex and p2 = py~ey.
Then squaring the electric field involves the combination

|~er × (~p1 + ~p2)|2 = |~er × ~p1|2 + |~er × ~p2|2 + 2(~er × ~p1) · (~er × ~p2) .

The time average of the last term is proportional to 〈pxpy〉 = p2
0〈cosωtr sinωtr〉 = 0 so

the intensities of the two out-of-phase dipoles indeed add linearly.
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Problem 3: Griffiths 11.5 (p. 454)

We start from Griffiths Eq. (11.33):

~A =
µ0m0 sin θ

4πr

(

1

r
cosωtr −

ω

c
sinωtr

)

~eφ , tr ≡ t− r

c
.

Using this, evaluate the fields:

~E = −∂
~A

∂t
=
µ0m0ω

2 sin θ

4πcr

(

cosωtr +
c

ωr
sinωtr

)

~eφ ,

~B = ~∇× ~A = Br~er +Bθ~eθ ,

Br =
µ0m0ω cos θ

2πcr2

(

c

ωr
cosωtr − sinωtr

)

,

Bθ = −µ0m0ω
2 sin θ

4πc2r

[(

1 − c2

ω2r2

)

cosωtr +
c

ωr
sinωtr

]

.

The electric field is the same as in Griffiths Problem 9.33 with ωtr = ωt− kr, k = ω/c,
A = µ0m0ω

2/4πc. The Poynting vector is

~S =
~E × ~B

µ0

=
Eφ

µ0

(Br~eθ −Bθ~er) .

The needed time averages are

〈(

cosωtr +
c

ωr
sinωtr

)(

c

ωr
cosωtr − sinωtr

)〉

=
c

ωr

(1 − 1)

2
= 0

and
〈

(

cosωtr +
c

ωr
sinωtr

)

[(

1 − c2

ω2r2

)

cosωtr +
c

ωr
sinωtr

]〉

=
1

2

(

1 − c2

ω2r2
+

c2

ω2r2

)

=
1

2
.

Thus,

〈~S〉 = I~er with I = −〈EφBθ〉
µ0

=
µ0

2c

(

m0ω
2 sin2 θ

4πcr

)2

,

in complete agreement with Griffiths Eq. (11.39).

Problem 4: Griffiths 11.21 (p. 473)

a) The time-average flux per unit area striking the surface is

I =
〈

~Srad

〉

· ~ez =
dP

dΩ

cos θ

R2 + h2
,
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where cos θ = h/
√
R2 + h2 is the angle between r̂ and ~ez. (Assuming that the

displacement is small, the distance from the mass to the surface is
√
R2 + h2,

and dP/dΩ is the radial Poynting flux multiplied by the square of the dis-
tance.) Plugging in Eq. (11.74) in the limit β � 1, we get

I =
µ0q

2 sin2 θ cos θ

16π2c(R2 + h2)

〈

z̈2
〉

,

where z̈ is the acceleration of the charge. The charge undergoes simple har-
monic motion with z(t) = d cosωt, so 〈z̈2〉 = 1

2
(dω2)2. Putting it all together

and using sin θ = R/
√
R2 + h2, we get

I =
µ0(qdω

2)2R2h

32π2c(R2 + h2)5/2
.

Maximizing this with respect to R gives R = h
√

2/3.

b) Using R = h tan θ, dR = h dθ/ cos2 θ, the total time-average power striking
the floor is

Pfloor =
∫

∞

0
I 2πR dR =

µ0(qdω
2)2

16πc

∫ π/2

0
sin3 θ dθ =

µ0(qdω
2)2

24πc
.

This is exactly half the time-average power radiated, Griffiths Eq. (11.22)
(with p0 = qd). It’s exactly what is to be expected, because half of the
radiation goes down (to hit the floor) and half goes up.

c) Using dE/dt = −P , and E = 1
2
mω2d2, we have

dE

dt
= −2Pfloor = −µ0q

2ω2

6πmc
E ,

whose solution is

E = E0e
−2t/τ , τ =

12πmc

µ0q2ω2
.

The amplitude is d = d0e
−t/τ , i.e. τ is the time for the amplitude to decrease

by a factor e.

Problem 5: Griffiths 11.23 (p. 474)

a) The total power radiated by a magnetic dipole is

P =
µ0

6πc3

〈∣

∣

∣

∣

∣

d2 ~m

dt2

∣

∣

∣

∣

∣

2〉
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where the angle brackets denote a time average. For a magnetic dipole vector
of fixed magnitude precessing with angular frequency ω around the z-axis,

d2 ~m

dt2
= ~ω × (~ω × ~m ) = −ω2 ~m+ (~ω · ~m )~ω ,

where ~ω = ω~ez. Squaring this gives

∣

∣

∣

∣

∣

d2 ~m

dt2

∣

∣

∣

∣

∣

2

= M2ω4(1 − cos2 ψ) = M2ω4 sin2 ψ

where M = |~m | and ψ is the angle between ~m and ~ω. The square is already
independent of time, so the total power radiated by a precessing magnetic
dipole is

P =
µ0M

2ω4

6πc3
sin2 ψ .

b) A static magnetic dipole has field given by Griffiths Eq. (5.86). Evaluating
this at the equator (θ = π/2) gives

M =
4πr3

µ0

Bdip =
4π(6.378 × 106 m)3(0.5 × 10−4 T)

4π × 10−7 T · m/A
= 1.30 × 1023 A · m2 .

The units of µ0 were converted using Ampére’s law to show that 1 N/(A·m) =
1 T.

c) The power emitted by magnetic dipole radiation is

P =
(4π × 10−7 T · m/A)(1.30 × 1023 A · m2)2(2π s−1/86400)4

6π(2.998 × 108 m s−1)3
sin2 ψ

= 1.17 × 10−3 sin2(11◦) w = 4.3 × 10−5 w .

d) The power emitted by a spinning neutron star is most easily obtained by
scaling from the earth using

P ∝
(

Bdipr
3

T 2

)2

where Bdip is the surface magnetic field at the equator, r is the radius, and
T is the spin period. Putting in the numbers,

Ppulsar = Pearth

(

108 T

0.5 × 10−4 T

)2 (

10 km

6378 km

)6 (
86400 s

10−3 s

)4

= 1.4 × 1035 w .

The book gives a larger number because it assumed ψ = π/4 instead of ψ =
11◦ for the neutron star, which increases the result by a factor sin2(π/4)/ sin2(11◦)
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to P = 1.9×1036 w. We do not know the misalignment angle between the spin
and the dipole moment of neutron stars. For comparison, the luminosity of
the sun is 4×1026 w – pulsars can be more than 109 times as luminous as the
sun! However, this energy does not travel freely through the galaxy because
the radiation frequency is far below the plasma frequency. The energy is
absorbed by the plasma creating a relativistic expanding cloud like the Crab
Nebula. This enormous luminosity does not persist; the energy comes from
the neutron star’s rotation which quickly decreases as the rotational energy
is radiated away.
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